Proxies, TLS, and Injecting Security into Cloud Communication

Susan Hinrichs
shinrich@verizonmedia.com, shinrich@apache.org
Verizon Media/Yahoo
Committer/PMC, Apache Traffic Server
About me

Work with Edge Team at Yahoo/Verizon Media
Support Apache Traffic Server. Committer, PMC member
Also work on various routing, networking tools
Teach yoga in my spare time
Goal of Talk

Present TLS scenarios we encountered while adapting services to external cloud scenarios

Describe how we use a proxy (Apache Traffic Server) to secure new traffic patterns

 Proxy supporting Application Delivery Network (ADN)

Work performed with my colleagues at Yahoo/Oath/Verizon Media and members of the Apache Traffic Server community

 Persia Aziz, Zeyuan Yu, and Alan Carroll
Apache Traffic Server: Web Cache and Proxy

Apache Traffic Server (ATS) has been used for many years. Primarily for the traditional web serving model.

Allows injection of business specific logic via “plugins” triggering on hooks during the lifecycle of a HTTP transaction and session.

We have spent the past two years enhancing TLS configuration to better support our evolving requirements to support hybrid cloud and fine-grained mutual TLS based authentication

https://trafficserver.apache.org/
Athenz: a Role Based Access Control (RBAC) System

Athenz is a open source RBAC system that leverages TLS mutual authentication

Contributed to open source by yahoo

Athenz has been the basis for much of our Verizon Media authentication work

- https://github.com/yahoo/athenz
Motivation
The Old Days, Corporate Data Centers

Dedicated resources to a single organization
Recent Past, Public Cloud

Each organization rents virtual resources from a 3rd party cloud service to run company apps

No employee investment in machine care and feeding. Quick to scale up and down.

But expensive for large, dedicated resource usage
Now, Hybrid Cloud

Run applications in combination of public and private resources

Dynamic and complex trust relationships
Network encryption is no longer optional

- Obviously must encrypt across the Internet
- Even within the same location pressure to encrypt. - Big brother is watching

Authentication must become stronger

- Just checking IP address is not sufficient (if it ever really was)
- Service client and servers can be in different locations
- Service endpoints may move on the next deployment cycle
Injecting TLS Authentication
Classic Client-Server TLS Authentication Model

Only server proves identity via certificate

Client authentication (if any) is through mechanism independent of TLS, e.g. password or 2FA
Mutual TLS Authentication Model

Client provides certificate too
Both sides verify the other’s certificate
Athenz provides a Role Based Access Control (RBAC) system on top of mutual TLS authentication
Retrofitting Clients for TLS

Process must connect to service using TLS

Client is not capable of TLS or maybe not capable of mutual TLS

- Put a proxy like ATS in front of the client
- Configure ATS to provide the same certificate for all outgoing service requests.
- What if client only should mutual TLS to some services?
Fine Grained Client Certificate Selection

Via conf_remap.so in remap.config

- Specify override for proxy.config.ssl.client.cert.filename
 @plugin=conf_remap.so
 @param=proxy.config.ssl.client.cert.filename=pci.pem

Via sni.yaml

- For FQDN Traffic Server requests to origin, use client_cert option to override default client certificate.
- sni:
 - fqdn: supersensitive.example.com
 client_cert: supersensitive.pem
Fine grained Server Certificate Verification

Ideally strongly verify all certificates provided by the origins

- Validating both signature and the requested name is in the certificate

Not all origins, may behave as we like.

- Can disable name or signature checking on a per origin basis
- Via sni.yaml or conf_remap

Can operate in permissive mode during initial testing deployment. Log failures but don’t fail.

Also plugin verification hook `TS_SSL_VERIFY_SERVER_HOOK` to inject more deployment-specific verification.
Retrofitting Server for TLS

Server must provide a TLS interface for clients

Server is not capable of TLS or maybe not capable of requiring certificates from clients or doing adequate certificate verification

- Put a proxy like Traffic Server in front of the server
- Configure Traffic Server to require certificates from all clients
- What if only some client requests require mutual TLS?
Using SNI to Drive TLS requirements

In Client Hello, user agent can set Server Name Indication (SNI) in the TLS Extensions

- Most modern clients do this

Server can adjust requirements for TLS handshake based on SNI value

- Which HTTP protocols to offer via ALPN
- Which TLS protocols allow
- Whether to require a client certificate
- Which ciphers to offer
Fine Grained Client Requirements

Within the sni.yaml file, can configure TLS server requirements based in the presented SNI

- **verify_client** Specify whether to request or require a client certificate
- **valid_tls_versions_in** Specify the set of TLS protocols to accept, e.g. don’t offer TLS1.0 and TLS1.1 to very sensitive domains
- **http2** Add or remove HTTP/2 for the set of ALPN protocols
- **tunnel_route** Don’t terminate the TLS connection on the proxy. Instead forward on the TLS handshake to the specified origin.
- **forward_route** Terminate TLS connection on proxy and blind tunnel contents to origin.
Augmenting Client Certificate Verification

The core ATS will validate the offered client certificate is signed by a certificate in the specified CA certificate list

Can build a plugin to hook on `TS_SSL_VERIFY_CLIENT_HOOK`

From there, plugin can access offered client certificate and make additional checks to possibly invalidate the TLS authentication

- **client whitelist plugin** - Will fail TLS handshake if certificate does not contain a name for the configured list of good names
- **Could write a plugin to check for specific serial numbers or any other field in the certificate**
Secure Edge: Proxy TLS
Proxying TLS via the Secure Edge

Much like retrofitting TLS Server. However, motivation is addressing client in one cloud and server in another cloud (e.g. hybrid cloud case).

Don’t want to expose cloud servers directly.

- May not trust security of client/server implementations
- May find it more security to enforce security standards on a fixed set of Edge machines.

Three options

- TLS Delegation
- Tunnel
- Bridge
TLS Delegation

Proxy validates CCert and authentication header H

Proxy presents PCCert and header H’ with information about the client’s authentication status

Must protect against malicious user presenting bogus H’ directly to Server
Attacking TLS Delegation

Request header H' only check if initial mutual TLS passes

If Malicious User can present and verify a certificate trusted by Server, all is lost.

Buying a cert signed by DigiCert or Symantec could be a problem

Server must trust a limited set of CA
TLS Tunnel

Proxy does not terminate TLS connection
Looks at SNI and decides where to forward the TLS bytes
 ● Actual TLS termination is end-to-end
Proxy just acts as a SNI-based router in this case

sni:
 - fqdn: supersensitive.example.com
tunnel_route: supersensitive.origin.example.com
TLS Bridge

Avoid decryption on Proxy, but make some guarantees on strength of TLS connection independent of the user agent and/or server stack

Build a separate Tunnel between gateways. Double tunnel.

TLS Bridge

Diagram showing the connection between a Client, Ingress ATS, Cloud Untrusted Networks, Peer ATS, and Service. The diagram illustrates the flow of data and security between these components.
TLS Bridge

Client connects to Ingress ATS
Proxy negotiates new TLS to Peer ATS
Proxies blind tunnel original traffic between client and service
Dynamic Certificate Support
More, Shorter-Lived Certificates = Deployment Headaches

With client certificate authentication, the Proxy must handle many certificates

Potentially one for each service

Ongoing process to reduce the lifetime of each certificate

Moving from years or months to weeks or days

Complicates proxy configuration

Does proxy need to be explicitly reloaded to pick up changes?

How can we verify that the changes have been correctly applied?
Improving Support for Many Short-lived Certificates

Certificate reporting tool

Hot loading certificates
Certificate Reporting Tool

Responds to message sent to plugin via the traffic_ctl utility

Dumps state of the currently loaded certificates (either client certificates or server certificates) to cert_reporting_tool.log file.

 Each entry contains: Time, lookup name, subject name, all subject alternate names (SAN), serial number, and validity time.

Looking at the dumps, the operator can verify whether the expected certificates were loaded.
Hot Loading Certificates

New Plugin APIs have been added in Traffic Server to update client or server certificates without a full configuration reload.

We have been experimenting with a plugin that takes a message of the name of certificate files to reload.

The operator can create a script using inotify or other knowledge of file updates to notify traffic server to reload specific certificates and keys.
Q&A

shinrich@verizonmedia.com
shinrich@apache.org
