
Eric Friedrich
Content Distribution Architect

Making New Friends
Apache Traffic Control + Varnish

Disney Streaming Services - Who We Are
● Disney Streaming Services brings beloved characters, timeless stories, and epic sporting

events to a global audience through world-class direct-to-consumer video services including
Disney+ and ESPN+.

● Built Media Caching Solutions around Live Events

○ Wrestlemania 34, Super Bowl LI

● Leveraging Commercial Content Delivery Networks (CDN)

● VOD was a different experience

○ WWE Network VOD and HBO Now
○ Lower peaks but more sustained traffic

○ Diverse content library
○ Variety and library size impacted user experiences

Who I Am

● Previously at Cisco/Synamedia contributing to Traffic Control
○ Focus on turnkey Service Provider CDN product

● Currently with Disney Streaming Services

● Combining existing Varnish caching infrastructure with Apache Traffic Control

Topics

● Content Distribution at Disney Streaming Services

● Varnish Cache Basics

● Integrating Varnish in ATC

● Q&A

Content Distribution at Disney Streaming

● Focused on origin shielding for commercial CDNs and OpenCaching
● Mix of Varnish caches and L7 load balancers
● Custom control plane

Control Plane

LB

Varnish Origin

CDN

CDN

OpenCaching

● Multiple Clusters of caches serve geographic regions
● Clients are CDNs so they perform localization on viewers
● Loadbalancers do consistent hashing and health checking on caches

Origin Shield Request Routing

LB

VarnishVarnish

Region 1

LB

VarnishVarnish

Region 2

Varnish Cache

Varnish Cache
● Varnish is a highly configurable reverse proxy

● Also Open Source! BSD-2 clause

● Configurable through Varnish Config Language (VCL)
○ Handles remapping, rewrites, TTLs, headers, custom logging, etc…
○ Pluggable backend selection
○ Backend health probing

● Separate TLS terminating proxy - Hitch or HAProxy

VCL Subroutines
vcl_recv()

vcl_hash()

vcl_hit() vcl_miss()

vcl_backend_fetch()

vcl_deliver()

vcl_backend_resp()

vcl_synth()

CDN Request Processing Responsibilities

● Delivery Service Isolation
● Request Scrubbing/Normalization
● Backend Selection
● Cache Key Creation
● Cached Object TTL Management
● Setting Response headers
● Logging

VCL Delivery Service Isolation

● VCL Labels provide isolation between Delivery Services
● Labels are separate bundles of VCL specifying different behaviors
● Label is activated based on incoming request properties (i.e. Host header)

sub vcl_recv() {
if (req.http.Host ~ “live.cdn.example.com”) {

return (vcl(live_ds));
} else if (req.http.Host ~ “vod.cdn.example.com”) {

return (vcl(vod_ds));
} else {

return (synth(503));
}

}

Request Normalization

○ Stripping Request Headers
○ Filter Request Method
○ Strip query strings
○ URL Rewrite

sub vcl_recv() {
unset req.http.Authorization;

if (req.method != GET) {
return(synth(405));

}

set req.url = regsub(req.url, “\?.*$”, “”);
set req.url = regsub(req.url, “^”, “/req_prefix”);

}

Backend Selection

○ Choosing Backend/Next-Hop
■ Random Weighted Selection

of backend
■ Other Directors - Hash, Shard,

Fallback, etc...
■ Host header remap

import directors;

backend parent1 {
.host = “192.168.0.1”;

}

backend parent2 {
.host = “192.168.0.10”;

}

sub vcl_init() {
new random_dir = directors.random();
random_dir.add_backend(parent1, 1.0);
random_dir.add_backend(parent2, 9.0);

}

sub vcl_recv() {
set req.backend_hint = random_dir.backend();

}

sub vcl_backend_req() {
set bereq.http.Host = “origin.example.com”;

}

Varnish Consistent Hashing

● Requests are received by any cache in the cluster, i.e “Edge” host
○ Shield fetches from Origin and caches locally
○ Edge proxies response back to client

● Shield host is determined by consistent hash of path
● Edge host is determined by client connection

Varnish 1

Varnish 2 Varnish 3

Varnish Consistent Hashing

● Requests are received by any cache in the cluster, i.e “Edge” host
○ Shield fetches from Origin and caches locally
○ Edge proxies response back to client

● Shield host is determined by consistent hash of path
● Edge host is determined by client connection

Varnish 1

Varnish 2 Varnish 3
Shield Edge

Varnish Consistent Hashing

● Requests are received by any cache in the cluster, i.e “Edge” host
○ Shield fetches from Origin and caches locally
○ Edge proxies response back to client

● Shield host is determined by consistent hash of path
● Edge host is determined by client connection

Varnish 1

Varnish 2 Varnish 3

Shield

Edge

Integrating Varnish in ATC

Integrating Varnish in ATC

● Motivation

● Configuration Generation

● Health Monitoring of Varnish

Integrating Varnish in ATC
● Prototyping custom solution as component of edge delivery strategy

● Extension of existing origin shield infrastructure

● Uses ATC Traffic Monitor for Health Protocol

● Uses ATC Traffic Router for client localization and redirection

Prototype Edge Delivery

Control Plane

LB

Varnish Origin

CDN

CDN

OpenCaching

Varnish TR/TM

Configuration Generation

● Implementing ATC TO authentication and APIs

● Hosting static files
○ (Deep)CZF
○ MMDB

● Added generation of
○ crconfig.json
○ monitoring.json
○ sslkeys.json

● Control Plane uses Apache Freemarker templates to generate VCL & ATC files

Config File Templates

Config DB

Templates

Apache
Freemarker

Rendered
Config File

● Freemarker combines context variables from DB with templates.

● Separating syntax of file from config variables eases development.

CRConfig Template Sample
"deliveryServices": {

<#list deliveryServices as ds>
"${ds.id}": {

"anonymousBlockingEnabled": "${ds.atcVpnBlock}",
<#if ds.atcBypassFqdn?has_content>
"bypassDestination": {
"HTTP": {
"port": "80",
"fqdn": "${ds.atcBypassFqdn}"

}
},

</#if>
"domains": [

"${ds.dnsName}.${cdn.domainName}"
],

},

Health Monitoring of Varnish

● Implemented a Varnish Module (vmod) to replace astats

● Varnish needs a vmod to generate an HTTP response body

● Code references astats implementation when possible
○ Uses same /proc and sysfs interfaces for data gathering

● No DS stats yet, just load avg and NIC bandwidth
○ Need further instrumentation for Delivery Service specific stats
○ Likely based on another vmod for creating custom counters

Calling libvmod_astats

● vcl_recv()
○ Matches URL with regex
○ Apply Traffic Monitor ACL
○ Signals astats mode to synthetic

response with internal request
header

● vcl_synth()
○ Calls astats with interface name
○ Astats internally generates JSON

response
○ Body returned to client

import astats;

acl atc_tm_acl { “192.168.10.0”/24;}

sub vcl_recv() {
if (req.url ~ “^/_astats”) {

if (client.ip ~ atc_tm_acl) {
set req.http.astats = true
return(synth(200, "OK"));

} else {
return synth(403);

}
}

}

sub vcl_synth() {
if (req.http.astats) {

synthetic(astats.info(...));
return (deliver);

}
}

Health Monitoring of Varnish

● Proof - Cache polling works
● Many pieces still under construction

○ IPv6
○ Multiple Interfaces sharing single IP- not bonding
○ Reporting as a single interface, with bandwidths summed

TLS Certificate Handling

● TLS keys/certs are stored in Control Plane
● Control Plane publishes Hitch PEM bundle and Traffic Router sslkeys.json
● Found a small bug in Subject Alternate Name wildcard matching

Control Plane

Hitch

Key

Cert

Traffic Router

Key

Cert

Delivery Svc
Hostname

Anycast Traffic Routers

● DNS servers are often run using Anycast

● For Traffic Router, embedded DNS server must bind to port 53 TCP and UDP on the
Anycast Virtual IPs

● TR listen IP configuration goes in dns.properties and server.xml
dns.udp.host=192.0.2.10
dns.tcp.host=192.0.2.10

TR 1

TR n

...

192.0.2.10

192.0.2.10

Conclusion

● Varnish Cache’s flexibility leads to easy integration with ATC

● Will hopefully do an Open Source libvmod-astats contribution

● ORT cache-side config generation could be extended to generate VCLs

Questions?

