o streaming
services

Making New Friends
Apache Traffic Control + Varnish

Eric Friedrich
Content Distribution Architect

Disney Streaming Services - Who We Are

e Disney Streaming Services brings beloved characters, timeless stories, and epic sporting
events to a global audience through world-class direct-to-consumer video services including
Disney+ and ESPN+.

e Built Media Caching Solutions around Live Events

o Wrestlemania 34, Super Bowl LI
e Leveraging Commercial Content Delivery Networks (CDN)

e VOD was a different experience
o WWE Network VOD and HBO Now
o Lower peaks but more sustained traffic
o Diverse content library
o Variety and library size impacted user experiences

Who | Am

e Previously at Cisco/Synamedia contributing to Traffic Control
o Focus on turnkey Service Provider CDN product

e Currently with Disney Streaming Services

e Combining existing Varnish caching infrastructure with Apache Traffic Control

Topics

e Content Distribution at Disney Streaming Services
e Varnish Cache Basics
e Integrating Varnish in ATC

o Q&A

Content Distribution at Disney Streaming

Control Plane

CDN

CDN

OpenCaching

” Origin

e Focused on origin shielding for commercial CDNs and OpenCaching
e Mix of Varnish caches and L7 load balancers
e Custom control plane

Origin Shield Request Routing

Region 1 Region 2

e Multiple Clusters of caches serve geographic regions
e Clients are CDNs so they perform localization on viewers
e Loadbalancers do consistent hashing and health checking on caches

Varnish Cache

Varnish Cache

e Varnish is a highly configurable reverse proxy

e Also Open Source! BSD-2 clause

e Configurable through Varnish Config Language (VCL)
o Handles remapping, rewrites, TTLs, headers, custom logging, etc...
o Pluggable backend selection

o Backend health probing

e Separate TLS terminating proxy - Hitch or HAProxy

VCL Subroutines

vcl_recv()

vcl_hash()

/\

vel_hit()

vcl_synth()

ch_Fniss()

vcl_backend_fetch()

A\ 4

vcl_backend_resp()

e

ch_deTiver()

CDN Reqguest Processing Responsibilities

Delivery Service Isolation

Request Scrubbing/Normalization
Backend Selection

Cache Key Creation

Cached Object TTL Management
Setting Response headers

Logging

VCL Delivery Service Isolation

e VCL Labels provide isolation between Delivery Services

e Labels are separate bundles of VCL specifying different behaviors
e Label is activated based on incoming request properties (i.e. Host header)

sub vcl recv () {
if (reg.http.Host ~ “live.cdn.example.com”) {
return (vcl (live ds));
} else if (reg.http.Host ~ “wvod.cdn.example.com”) {
return (vcl(vod ds));
} else {

return (synth(503));

Request Normalization

sub vcl recv () {
unset reqg.http.Authorization;

Stripping Request Headers
Filter Request Method
Strip query strings

URL Rewrite

if (reg.method != GET) {
return (synth (405)) ;
}

O O O O

set req.url = regsub(reg.url, “\?.*$”, V),
set req.url = regsub(req.url, “*”, “/req prefix”);

Backend Selection

import directors;

backend parentl {
.host = “192.168.0.1";
}

backend parent2 {
.host = “192.168.0.10";
}

sub vcl init () {
new random dir = directors.random/()
random dir.add backend(parentl, 1.0
random dir.add backend(parent2, 9.0
}

)7
)I
sub vcl recv () {

set reqg.backend hint = random dir.backend();

}

sub vcl backend reqg() {
set bereqg.http.Host = “origin.example.com”;

}

o Choosing Backend/Next-Hop
s Random Weighted Selection
of backend
m Other Directors - Hash, Shard,
Fallback, etc...
m Host header remap

Varnish Consistent Hashing

Varnish 1

Varnish 2 Varnish 3

e Requests are received by any cache in the cluster, i.e “Edge” host
o Shield fetches from Origin and caches locally
o Edge proxies response back to client

e Shield host is determined by consistent hash of path

e Edge host is determined by client connection

Varnish Consistent Hashing

Varnish 1

Varnish 2 < Varnish 3

A

Shield i Edge

e Requests are received by any cache in the cluster, i.e “Edge” host
o Shield fetches from Origin and caches locally
o Edge proxies response back to client

e Shield host is determined by consistent hash of path

e Edge host is determined by client connection

Varnish Consistent Hashing

Varnish 1
/eld
—> Varnish 2 Varnish 3

Edge

e Requests are received by any cache in the cluster, i.e “Edge” host
o Shield fetches from Origin and caches locally
o Edge proxies response back to client

e Shield host is determined by consistent hash of path

e Edge host is determined by client connection

Integrating Varnish in ATC

Integrating Varnish in ATC

e Motivation
e Configuration Generation

e Health Monitoring of Varnish

Integrating Varnish in ATC

Prototyping custom solution as component of edge delivery strategy

Extension of existing origin shield infrastructure

Uses ATC Traffic Monitor for Health Protocol

Uses ATC Traffic Router for client localization and redirection

Prototype Edge Delivery

CDN

Control Plane

CDN

OpenCaching

g Origin

Configuration Generation

Implementing ATC TO authentication and APIs

Hosting static files
o (Deep)CZF
o MMDB

Added generation of
o crconfig.json
o monitoring.json
o sslkeys.json

Control Plane uses Apache Freemarker templates to generate VCL & ATC files

Config File Templates

3
Config DB
Apache Rendered
Freemarker Config File
3
Templates

e Freemarker combines context variables from DB with templates.

e Separating syntax of file from config variables eases development.

CRConfig Template Sample

"deliveryServices": {
<#list deliveryServices as ds>
"${ds.id}": {

"anonymousBlockingEnabled": "${ds.atcVpnBlock}",
<#if ds.atcBypassFqgdn?has content>
"bypassDestination": {
"HTTP": {
"port": "80",

"fgdn": "${ds.atcBypassFqdn}"
}
|

</#if>
"domains": [

"${ds.dnsName}.${cdn.domainName}"
1y

Yo

Health Monitoring of Varnish

e Implemented a Varnish Module (vmod) to replace astats
e Varnish needs a vmod to generate an HTTP response body

e Code references astats implementation when possible
o Uses same /proc and sysfs interfaces for data gathering

e No DS stats yet, just load avg and NIC bandwidth
o Need further instrumentation for Delivery Service specific stats
o Likely based on another vmod for creating custom counters

Calling libvmod_astats

import astats;
acl atc_tm acl { “192.168.10.07/24;}

sub vcl recv () {
if (reqg.url ~ “*/ astats”) {
if (client.ip ~ atc tm acl) {
set reg.http.astats = true
return (synth (200, "OK"));
} else {
return synth (403);

}

sub vcl synth() {
if (reg.http.astats) {
synthetic (astats.info(...));
return (deliver);

vcl_recv()
o Matches URL with regex
o Apply Traffic Monitor ACL
o Signals astats mode to synthetic
response with internal request
header

vcl_synth()
o Calls astats with interface name
o Astats internally generates JSON
response
o Body returned to client

Health Monitoring of Varnish

Server Type IPvd IPv6 Status Load Average Bandwidth (mbps)
varnish04-c01-ewr1 EDGE true false REPORTED - available 0.1 0.11 /25,000
varnish03-c01-ewr1 EDGE true false REPORTED - available 1 0.11 /25,000

e Proof - Cache polling works
e Many pieces still under construction
o IPvo
o Multiple Interfaces sharing single IP- not bonding
o Reporting as a single interface, with bandwidths summed

TLS Certificate Handling

Control Plane

4/\

Hitch Traffic Router
Hostname
Key Delivery Svc
Cert Key
Cert

e TLS keys/certs are stored in Control Plane
e Control Plane publishes Hitch PEM bundle and Traffic Router sslkeys.json
e Found asmall bug in Subject Alternate Name wildcard matching

Anycast Traffic Routers

TR
S~7 > o\ 92,0210
l S '
TR N
192.0210

e DNS servers are often run using Anycast

e For Traffic Router, embedded DNS server must bind to port 53 TCP and UDP on the
Anycast Virtual IPs

e TR listen IP configuration goes in dns.properties and server.xml

dns.udp.host=192.0.2.10
dns.tcp.host=192.0.2.10

Conclusion

e Varnish Cache’s flexibility leads to easy integration with ATC
e Will hopefully do an Open Source libvmod-astats contribution

e ORT cache-side config generation could be extended to generate VCLs

Questions?

