
Proxy Pains and Benefits
Supporting HTTP/2 End to End

Susan Hinrichs
shinrich@apache.org

September 22, 2021

mailto:shinrich@apache.org

• I am a Traffic Server Committer

▪ This work was performed while at Yahoo

▪ Recently moved to Aviatrix, so less Traffic Server for me

• Aaron Canary did some of this work while he was at Yahoo

• Brian Neradt has done work for testing HTTP/2 and is taking the testing torch

at Yahoo

• Masakazu and Masaori have been involved in reviews and design discussions.

Driving forces in HTTP/2 and HTTP/3 development in general

Team Effort

• Traffic Server offers clients

▪ HTTP/1.x (with and without TLS) and HTTP/2

• Traffic Server only offers origins HTTP/1.x (with and without TLS)

• Use cases for HTTP/2 to origin as well

▪ Forward proxies – more transparent experience

▪ Reverse proxies – take advantage of smart origins. Better session reuse

▪ Proxy newer protocols like gRPC which are built over HTTP/2

Motivation

• More than 8 years ago

▪ ATS only supported HTTP/0.9,1.0,1.1 both inbound and outbound

• Around 8 years ago

▪ ATS added support for SPDY inbound

▪ Implemented as a plugin, wrapped with PluginVC

▪ PluginVC very awkward to debug and performance tune

• Around 7 years ago

▪ ATS added support for HTTP/2 inbound

▪ Still PluginVC wrapped plugin

Short Traffic Server HTTP/2 History

• Around 6 years ago, I entered the scene

▪ Implemented TS-3612 to separate details of HTTP transport from

HTTP state machine (HttpSM).

▪ Introduced ProxySession, ProxyTransaction

▪ Landed in ATS 6.x

• Shortly after HTTP/2 moves from Plugin to core for inbound

History Continued

https://issues.apache.org/jira/browse/TS-3612

Inbound Transaction Class Hierarchy

HttpSM ua_txn
member

Inbound Session Class Hierarchy

ProxyTransaction
proxy_ssn member

• Some work started in 2018

▪ I started prototyping HTTP/2 to origin

▪ Kees Spoelstra had a proprietary implementation for a customer

▪ Presentation at Cork Summit

• Then other projects took over for a bit, got back to HTTP/2 origin late 2020

▪ Aaron Canary worked on abstracting Http1ServerSesson. In 9.1.

▪ Set up HTTP/2 to origin PR March 2021. Marked for 10.0

▪ Landed outbound protocol separation from HttpSM. Marked for 9.2.

▪ Landed Http2Session class separation. Marked for 9.2

Outbound HTTP/2

https://cwiki.apache.org/confluence/display/TS/Presentations+-+2018?preview=/75958509/80453132/Cork_%20%20Http2%20to%20origin.pdf#Presentations2018-EuroTour2018
https://github.com/apache/trafficserver/pull/6828
https://github.com/apache/trafficserver/pull/7622
https://github.com/apache/trafficserver/pull/7849
https://github.com/apache/trafficserver/pull/8281

• Yahoo doing some production testing of a 9.1 branch

▪ I was pushing this work, now Brian Neradt is

• Looking for other groups to work with this branch

• Aiming to land in 10.0, but ideally many of us get experience

before then

Current HTTP/2 Status

Augmented
ProxyTransaction

Hierarchy

HttpSM ua_txn
and server_txn

members

Augmented
ProxySession

Hierarchy

• ALPN setting proxy.config.ssl.client.alpn_protocols

▪ By default empty (original HTTP/1.x behavior)

▪ h2,http1.1 would offer h2 and http1.1 to origins

▪ In our tests against clients, most offer h2,http1.1. Others offer

combinations of spdy and older h2 pre-release versions

• Overridable

▪ Can choose to offer HTTP/2 to only certain origins

Configuring HTTP/2 as origin option

Pooling while Connecting to Origins

Traffic
Server

Origin

50 requests to
foo.example.com

50 requests to
Origin

Map foo.example.com to origin
No cache hit

• How do we handle connections to origin?

• If HTTP/1.1, fastest to make 50 simultaneous connection requests

▪ Transaction requests for HTTP/1.1 are serialized over a connection

• If HTTP/2, probably better to set up 1 or 2 sessions and multiplex all transactions over

those sessions

• The HTTP/2 branch adds a connecting_pool.

▪ Look at hostdb to see the protocol negotiated on last connection

▪ If it was HTTP/2, see if there is already a HTTP/2 session being

negotiated

▪ If so, add the current request to a queue for the existing request.

• When session is ready, signal all queued state machines

Adding Connecting_Pool

• Thanks to stream multiplexing, one HTTP/2 session can be the source for

many simultaneous transactions

• Therefore, a HTTP/2 session cannot be moved between threads.

▪ ATS asserts that all network IO operations for client and server side of a HTTP state

machine occur on same thread

▪ If a HTTP/2 session provided transactions for state machines on multiple threads,

this assertion would be broken

• HTTP/2 origins cannot work with global origin session reuse pools

▪ Must use hybrid or thread pools

Origin Session Reuse

• The presence of an autest integration suite has greatly

enhanced the stability of the HTTP/2 feature Branch

▪ Compared to my experience making the similar inbound changes

6 years ago

▪ The autest caught many stupid unintended side effects

Integration Testing

• Brian Neradt added HTTP/2 support for the server side of

Proxy Verifier

• Used that to add some HTTP/2 to origin tests on the HTTP/2

Branch

▪ H2origin.test.py and h2_origin_single_thread.test.py

▪ Need more test cases always, but it is a start.

ProxyVerifier

https://github.com/apache/trafficserver/pull/7622/files#diff-11524e1828f785ead113437bf82c6d3351f1ae3e7b5e692194c18b8433e71a73
https://github.com/apache/trafficserver/pull/7622/files#diff-8f989b4489fc59321de1c76f3838e5793fa65047f197a368683bca01b667e09f

• Started limited production testing at the end of 2020

▪ First phase just getting stability

▪ After the first month, spent the time teasing out performance issues

• Testing in Yahoo Edge environment

▪ Mix of caching (CDN) and pure proxying (ADN)

• Origins mix of Traffic Server, Nginx, Istio, and unknown

Production Testing

• After the initial phase of fixing crashes, spent a lot of time analyzing

performance issues

▪ Mostly unexpected timeouts

▪ Increase of ERR_CLIENT_ABORTS, ERR_CLIENT_READ, ERR_TIMEOUT

▪ A GOAWAY from the origin would immediately shutdown all active streams

▪ Protocol failures will have a far greater impact than they did on HTTP/1.x

• Tested in ADN/CDN Edge environment

• Fixed several general performance issues queued for 9.2

• Also identified some configuration changes

Production Performance Testing

• Fix landed in master and marked for 9.2

• https://github.com/apache/trafficserver/pull/8178

• Found while another Traffic Server was acting as origin. Should improve performance to end user as well

• The draining process for HTTP/2 was using the “Connection: close” header to signal that the

HTTP/2 session should start shutting down

▪ HTTP/2 should be ignoring the Connection headers

• HttpSM sets the Connection header to close on failures where the client or origin HTTP/1.1

connection is left in an unknown state

▪ Assumed HTTP/2 was just ignoring all this

▪ Instead the HTTP/2 origin would just randomly shutdown

▪ Would finish existing streams, but limited the lifetime of the origin connection.

Abstract connection close header to avoid
triggering H2 draining logic

https://github.com/apache/trafficserver/pull/8178

• Process response headers before post tunnel is finished

• https://github.com/apache/trafficserver/pull/7976

• Was testing against an origin that would return 40x response when

overloaded without reading the full post body.

• Pass through expect header and handle 100-continue response

• https://github.com/apache/trafficserver/pull/7962

• Also came out of testing during the early post return PR above

Dealing with origins returning early

https://github.com/apache/trafficserver/pull/7976
https://github.com/apache/trafficserver/pull/7962

• Another issue was mis-ordering the id assignment for outbound streams

• For inbound streams, the ID is set when the stream is created. And we initially

took that approach for outbound streams too

• However, there can be varying amounts of delay between the outbound stream

creation and when the HEADER frame is sent to the origin.

• It is a connection error if new streams do not have monotonically increasing IDs.

• To avoid this, the current code separates the ID assignment from the stream object

construction for outbound streams. The ID only gets set in the send_headers()

method.

Delaying outbound stream id assignment

• When ATS starts a H2 session with a peer, one of the settings is

MAX_CONCURRENT_STREAMS (defaults to 100).

▪ If ATS sends a HEADER frame to start a new stream and the peer thinks the

limit has been reached, it will reject the new stream. Any DATA frames in play

for the new stream will also fail and result in a connection error.

• The H2 to origin code tracks how many active streams it thinks the peer

has. If it is at 90% of the limit, it will not create a new stream on that

session. It will remove it from the session reuse pool.

• When the ATS stream count for its peer reaches 50% of the limit, ATS

will add it back to the session reuse pool.

Reducing Max Concurrent Stream Overruns

• Reducing keep alive origin session timeouts

▪ Moving from global to hybrid pool means increase in total origin

session counts

• Increase Http/2 window sizes

▪ Debate on how to specify session versus window sizes in Issue

#8199

Performance Related Configuration Tuning

https://github.com/apache/trafficserver/issues/8199

HTTP/2 Data Windows
• Data Window for session and each stream

• Stop sending data on stream if either stream or session

window are 0

• Traffic Server initializes both session and stream

windows to the same initial window value.

Session_window=65535
stream1-50 window=65535

Some of the bodies will
temporarily stall because the

session window will go to 0 before
the window_update frames appear

• In my production testing, added a separate session window

▪ PR #8203

• In Issue #8199

▪ Masakazu proposes dynamically adjusting the per stream windows based on the

number of active streams

• Could also make sure the current session is big enough to cover all concurrent

streams and hope for the best

• For a busy, highly used HTTP/2 session the default is probably too small and

causing unnecessary stalls

HTTP/2 Data Windows

https://github.com/apache/trafficserver/pull/8203
https://github.com/apache/trafficserver/issues/8199

• Running two Traffic Server machines in the same POD

▪ control 9.1

▪ 9.1 + H2 to origin

• Comparing origin session reuse and TTMS (time to complete

transaction) over 15 minute squid/access logs

Preliminary Production Test Results

Total

Trans

Ave

reuse

50% 80% 90% 95% 99%

H1

origin

2805337 7 3 14 21 29 47

Origin Reuse Comparison

Total

Trans

Ave

Reuse

50% 80% 90% 95% 99%

H2

origin

367071 44497 52835 55138 55911 56366 56959

H1

origin

2460991 209 40 329 629 974 1895

Both 2828062 5957 69 610 50734 53716 56109

9.1 Control

9.1 + H2 enabled to 2 very active origins

TTMS Comparison

9.1 Control

9.1 + H2 enabled to 2 very active origins

Total

Trans

Ave

TTMS

50% 80% 90% 95% 99%

H1

origin

2805337 147 50 179 313 446 972

Total

Trans

Ave

TTMS

50% 80% 90% 95% 99%

H2

origin

367071 142 36 62 111 184 1744

H1

origin

2460991 144 47 193 327 466 957

Both 2828062 144 42 173 312 447 987

• gRPC requires HTTP/2 on both sides

• gPRC requires trailing headers

• Traffic Server currently parses and ignores trailing headers

Proxying gRPC

• The HTTP/2 Branch adds some support for trailing headers and gRPC

▪ Trailing HTTP/2 header frames only. Not HTTP/1.1 chunked tailing headers.

▪ I tested some of the basic gRPC Python examples through Traffic Server.

The most recent test was late 2020

• In addition, good gRPC support may require origin connections

dedicated to clients

▪ Traffic Server offers proxy.config.http.attach_server_session_to_client

▪ Need to test that scenario

Proxying gRPC

• Of course this is not the end, there will be many more issues

moving forward.

Future Changes

• Currently HTTP/2 logic serializes headers. HttpSM, parses

them back to headers. HttpSM serializes headers back to

the ProxyTransaction.

▪ If both sides are HTTP/2, ATS is serializing the headers 3 times.

▪ Being tracked by issue #5230

Reduce Header Serialization

https://github.com/apache/trafficserver/issues/5230

• With this infrastructure in place, the time between

supporting QUIC inbound and QUIC outbound should not be

so long

• And whatever the next protocol that comes along.

Support QUIC and HTTP/3 outbound

• Please go test HTTP/2 to origin!

• shinrich@apache.org

Any questions?

