
Self-Service
Architecture

October 18, 2017

Goals
1. Privileged users should be able

to add/modify/delete:

A. Other users in their tenant

B. Sub-tenants beneath their
tenant

C. Delivery services in their
tenant

Goals
1. Privileged users should be able

to add/modify/delete:

A. Other users in their tenant

B. Sub-tenants beneath their
tenant

C. Delivery services in their
tenant

Goals
1. Privileged users should be able

to add/modify/delete:

A. Other users in their tenant

B. Sub-tenants beneath their
tenant

C. Delivery services in their
tenant

Goals
1. Privileged users should be able

to add/modify/delete:

A. Other users in their tenant

B. Sub-tenants beneath their
tenant

C. Delivery services in their
tenant

Current Workflow

Tenant

Business
Logic

Ops
Traffic
Ops

Current Workflow

Ops
Caches

Ops

Traffic Routers Profit

Current Workflow

Pros:

• No partial changes
from ops

• No accidental
deployments

• Heavy sequence
point

Queue Updates

Cons:

• Manual, expensive

• Tooling is poor

Pros:

• No partial changes from
ops

• No accidental
deployments

CRConfig Snapshot

Cons:

• Scales horribly!

• (8.9MB, 411,237 lines)

• Manual, expensive

• Tooling is poor

Current Workflow

Current Architecture

Pull

versus

Poll
versus

Push

High-level goals

Ops
Engineer

Tenant
Engineer

Caches

Traffic
Routers

Traffic
Monitors

Traffic
Stats

Distributed ChangeLog

Fancy set of diagrams go here.

With Feedback

Another fancy set of diagrams go here.

Where does Error
Handling go?

High-level design conclusions

1. Traffic Ops administers generic concepts, not
software-specific implementations.

2. Traffic Ops generates “change sets” that are
distributed

3. All components will consume a standard format for
the same configuration

4. Each component will provide a standard facility to
validate and provide feedback on the changes

High-level design conclusions

1. Traffic Ops administers generic concepts, not
software-specific implementations.

2. Traffic Ops generates “change sets” that are
distributed

3. All components will consume a standard format for
the same configuration

4. Each component will provide a standard facility to
validate and provide feedback on the changes

High-level design conclusions

1. Traffic Ops administers generic concepts, not
software-specific implementations.

2. Traffic Ops generates “change sets” that are
distributed

3. All components will consume a standard format for
the same configuration

4. Each component will provide a standard facility to
validate and provide feedback on the changes

High-level design conclusions

1. Traffic Ops administers generic concepts, not
software-specific implementations.

2. Traffic Ops generates “change sets” that are
distributed

3. All components will consume a standard format for
the same configuration

4. Each component will provide a standard facility to
validate and provide feedback on the changes

High-level design conclusions - continued

5. Traffic Ops continues to house the heaviest state.
The state that exists in other components will lean
towards ephemeral.

6. Zero manual intervention needed to achieve goals.
Solution should “just work”.

7. Roll-back is not automated, roll-forward is.

8. For a given key, failure of one change should not
affect

9. Time-to-running should feel immediate.

High-level design conclusions - continued

5. Traffic Ops continues to house the heaviest state.
The state that exists in other components will lean
towards ephemeral.

6. Zero manual intervention needed to achieve goals.
Solution should “just work”.

7. Roll-back is not automated, roll-forward is.

8. For a given key, failure of one change should not
affect

9. Time-to-running should feel immediate.

High-level design conclusions - continued

5. Traffic Ops continues to house the heaviest state.
The state that exists in other components will lean
towards ephemeral.

6. Zero manual intervention needed to achieve goals.
Solution should “just work”.

7. Roll-back is not automated, roll-forward is.

8. For a given key, failure of one change should not
affect

9. Time-to-running should feel immediate.

High-level design conclusions - continued

5. Traffic Ops continues to house the heaviest state.
The state that exists in other components will lean
towards ephemeral.

6. Zero manual intervention needed to achieve goals.
Solution should “just work”.

7. Roll-back is not automated, roll-forward is.

8. For a given key, failure of one change should not
affect future changes

9. Time-to-running should feel immediate.

High-level design conclusions - continued

5. Traffic Ops continues to house the heaviest state.
The state that exists in other components will lean
towards ephemeral.

6. Zero manual intervention needed to achieve goals.
Solution should “just work”.

7. Roll-back is not automated, roll-forward is.

8. For a given key, failure of one change should not
affect

9. Time-to-running should feel immediate.

Future Workflow

Caches

Tenant

Business
Logic

Traffic
Ops

Magic Magic

Traffic Routers,
Other components

Traffic
Portal

Future Architecture

Kafka Topics & Keys

Topic (CDN name) Key (scope.unique_identifier.sequence_point)

kabletown-cdn ds.video-delivery-service.1508284754

kabletown-cdn ds.images-delivery-service.1508285085

kabletown-cdn cache.edge-cache-1-fqdn.1508284847

kabletown-cdn cg.west-cache-group.1508284963

kabletown-cdn user.markt.1508285139

Sequence Points & Feedback Loop
{ "ats": {

"server": "6.2.2"
 },
 "system": {
 “inf.name": "bond0",
 "inf.speed": 20000,
 "proc.net.dev": "bond0: 0 0 0 0 0 0 0 0 0",
 "proc.loadavg": "2.28 2.42 2.23 2/1020 20303",
 "configReloadRequests": 150,
 "lastReloadRequest": 1508325772,
 "configReloads": 6,
 "lastReload": 1508277746,
 "astatsLoad": 1504111630,

"something": "here"
 },
“trafficControl” : {
“configSequencePoints”: {

“applied”: 1508335000”
“rejected”: [

1508331000,
1508332000,
1508333000,
1508334000

]
}

}
}

JSON Changelog?

{
 "response": {
 "hostname": “edge1”,

 "profile": "EDGE1",
 "cachegroup": "cg1",

 "ipGateway": "10.1.0.1",
 "ipAddress": "10.1.0.2",
 "ipNetmask": "255.255.255.0",
 "interfaceMtu": 9000,
 }

}

{

 "response": {
 "hostname": “edge1",

"profile": "EDGE1",
 "cachegroup": "cg1",

 "ipGateway": “10.1.0.1",
 "ipAddress": "10.1.0.3",
 "ipNetmask": "255.255.255.0",

 "interfaceMtu": 9000,
 }

}

{

 "response": {
 "ipAddress": "10.1.0.2",
 }
}

Diff

A B

Properties File Changelog?

cache.edge1.profile.name EDGE1
cache.edge1.cachegroup cg1
cache.edge1.ipGateway “10.1.0.1”
cache.edge1.ipAddress “10.1.0.3”
cache.edge1.ipNetmask “255.255.255.0”
cache.edge1.interfaceMtu 9000

Diff

A B
cache.edge1.profile.name EDGE1
cache.edge1.cachegroup cg1
cache.edge1.ipGateway “10.1.0.1”
cache.edge1.ipAddress “10.1.0.2”
cache.edge1.ipNetmask “255.255.255.0”
cache.edge1.interfaceMtu 9000

cache.edge1.ipAddress.1500000000 “10.1.0.2”

cache.edge1.ipAddress.1600000000 “10.1.0.3”

Delivery Service Add
envelope: {

topic “kabletown-cdn"

scope “ds”

sequencePoint.scope.current 1500000000

sequencePoint.scope.previous 1400000000

sequencePoint.topic.current 1500000000

sequencePoint.topic.previous 1450000000

}

response: {

ds.video-delivery-service.ipAddress.hostregex.1500000000 “.*\.video-delivery-service\..*”

ds.video-delivery-service.ipAddress.queryStringHandling.1500000000 “drop-at-edge”

ds.video-delivery-service.ipAddress.maxDnsAnswers.1500000000 5

ds.video-delivery-service.ipAddress.tlsEnabled.1500000000 true

ds.video-delivery-service.ipAddress.active.1500000000 1

}

Kafka Topics & Keys

All components subscribe

to the topic in their CDN

Edit DS Use Case

• Question to group - user submits a change to their
DS, change fails to apply to a component. What do
we do?

• Roll-back is not automated

• DS gets marked as ‘un-validated’ in Traffic Ops?

New dependency!

• Traffic Configurator (Kafka)! (kidding)

• Shoot. The last thing we need is another dependency
to get your CDN working.

• ORT (or replacement) will still be able to work. (Non-
self-service mode should still be a thing.)

Sounds like PubSub

Why not actually just use PubSub?

• Eh, could. Maybe.

• Existing implementations seem to fall short.

• No momentum?

• Like lots of things, the current implementations seem to
fall short. This is important enough to us to roll our own.

• The feedback loop is crucial to this being reliable.

Super Advanced
Config

Will still need to be changed on a DS
manually, by a trusted professional

What about the bootstrap case?
Kafka log compaction to the rescue!

http://cloudurable.com/blog/kafka-architecture-log-compaction/index.html

What about the bootstrap case?
Kafka log compaction to the rescue!

LOE per component

Self-service 0.1
traffic_ops=# \d deliveryservice;
 Table "public.deliveryservice"
 Column | Type | Modifiers
-----------------------------+--------------------------+--
 id | bigint | not null default nextval('deliveryservice_id_seq'::regclass)
 xml_id | text | not null
 active | boolean | not null default false
 dscp | bigint | not null
 signed | boolean | default false
 validated | boolean | default false
 qstring_ignore | smallint |
 geo_limit | smallint | default '0'::smallint
 http_bypass_fqdn | text |
 dns_bypass_ip | text |
 dns_bypass_ip6 | text |
 dns_bypass_ttl | bigint |
 org_server_fqdn | text |
 type | bigint | not null
 profile | bigint |
 cdn_id | bigint | not null
 ccr_dns_ttl | bigint |
 global_max_mbps | bigint |
 global_max_tps | bigint |
 long_desc | text |
 long_desc_1 | text |
 long_desc_2 | text |
 max_dns_answers | bigint | default '0'::bigint
 info_url | text |
 miss_lat | numeric |
 miss_long | numeric |
 check_path | text |
 last_updated | timestamp with time zone | default now()
 protocol | smallint | default '0'::smallint
 ssl_key_version | bigint | default '0'::bigint
 ipv6_routing_enabled | boolean | default false
 range_request_handling | smallint | default '0'::smallint
 edge_header_rewrite | text |
 origin_shield | text |
 mid_header_rewrite | text |
 regex_remap | text |

Opening questions

1. What is self-service?

2. Who thinks Self-Service needs to be a priority for
Traffic Control?

3. What would folks like to discuss in this talk?

4. What would folks like to get out of this session?

1. I would like to get a loose consensus on the
direction — we don’t get together often (summits,
hangouts, etc), so we need to capitalize

